Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 60(18): 6719-6729, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34054214

RESUMO

Fast biomass pyrolysis is an effective and promising process for high bio-oil yields, and represents one of the front-end technologies to provide alternative, sustainable fuels as a replacement of conventional, fossil-based ones. In this work, the effect of droplet initial diameter on the evaporation and ignition of droplets of crude fast pyrolysis bio-oil (FPBO) and FPBO/ethanol blend (50% vol) at ambient pressure is discussed. The experimental tests were carried out in a closed single droplet combustion chamber equipped with optical accesses, using droplets with a diameter in the range of 0.9-1.4 mm. The collected experimental data show a significant effect of droplet diameter and initial fuel composition on the evaporation and combustion of the droplets. At the same time, 1-dimensional modeling of the evaporation and ignition of different droplets of crude FPBO and its blend with ethanol is performed to understand the complex physical and chemical effects. To this purpose, an 8-component surrogate was adopted, and a skeletal mechanism (170 species and 2659 reactions) was obtained through an established methodology. The comparison of numerical and experimental results shows that the model is able to capture the main features related to the heating phase of the droplet and the effect of fuel composition on droplet temperature and evaporation, particularly the increased reactivity following ethanol addition and the variation of diameter with time. Also, a sensitivity analysis highlighted the reactions controlling the autoignition of the droplets in the different conditions. It was found that the autoignition of pure FPBO droplets is governed by dimethyl furane (DMF), because of its high volatility and in spite of not being the most abundant species. On the other side, ethanol chemistry drives the gas-phase ignition in the case of the blended (50/50 v/v) mixtures, due to its higher volatility and reactivity.

2.
Bioresour Technol ; 222: 148-155, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27721094

RESUMO

The study evaluated the growth of Desmodesmus communis on column photobioreactor and its thermochemical treatment by catalytic pyrolysis using HZSM-5 zeolite. D. communis showed good results in terms of growth (0.05gL-1d-1). Analytical pyrolysis of original algae and derived bio-oil mixed with zeolite was used as a screening method in order to gather information on the cracking process. Preparative pyrolysis on bench scale reactor was performed on algae biomass over a zeolite bed at 1:10 ratio (wt/wt). Py-GC-MS of biomass/catalyst mixture showed that the denitrogenation/deoxygenation increased with increasing zeolite load from 1:5 to 1:20 ratio and became significant at 1:10 ratio. The composition observed by analytical pyrolysis was featured by the predominance of alkylated monoaromatic hydrocarbons. The scaling-up to bench scale confirmed the results obtained with analytical pyrolysis in terms of monoaromatic hydrocarbons. However, low yield of catalytic oil (8% by weight) was observed.


Assuntos
Biotecnologia/métodos , Clorófitas/metabolismo , Hidrocarbonetos/metabolismo , Microalgas/metabolismo , Biocombustíveis/análise , Biomassa , Biotecnologia/instrumentação , Catálise , Clorófitas/química , Clorófitas/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos/análise , Hidrocarbonetos/química , Microalgas/química , Microalgas/crescimento & desenvolvimento , Fotobiorreatores , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...